Cheatsheet to help you decide which fix for the last-comment n+1

problem is the best for you

(... based on my opinion (2 ... but based on benchmarks &)

Fetched Comments Requests per Recomendation

”Sorted comments”

posts per post second
class Post
20 5 Less than 300 Sorted comments has_many :sorted_comments, -> { order(:created_at) }
20 5 More than 300 Feed looping, Fragment caching
def latest_comment
20 10 Lessthan200 Sorted comments sorted_comments.last
20 10 More than 200 Feed looping, Fragment caching end
end
20 50 Less than 80 Sorted comments
20 50 More than 80 Feed looping, Fragment caching Post.includes(:sorted_comments).each do Ipostl
puts post.latest_comment
20 100 Less than 700 Feed looping, Fragment caching end
20 1000 Less than 200 Feed looping, Fragment caching

“Fragment caching"

class Post < ActiveRecord: :Base
has_many :comments

def latest_comment
comments.order(:id).last
end
end

class Comment < ActiveRecord::Base
belongs_to :post
end

In your view...

render partial: 'posts/post', collection: @posts,

cached: true

cache post
post.title
post.latest_comment.body
end

“Feed looping” through the latest comment for each post

class Post < ActiveRecord: :Base
has_many :comments
end

class Comment < ActiveRecord::Base
belongs_to :post

def self.latest_comments_for_posts

latest_comments_ids select("max(id)").group(:post_id)
where(id: latest_comments_ids)
end

end

class Feed
def posts

Post.all
comments = Comment.latest_comments_for_posts.group_by(&:post_id)

posts
posts.map { Ipost| FeedPost.new(post, comments[post.id]&.first) }
end

end

class FeedPost
attr_reader :latest_comment

def initialize(post, latest_comment)

@post = post
@latest_comment = latest_comment
end
end

feed = Feed.new

feed.posts.map do Ipostl
puts post.latest_comment.body
end

https://bhserna.com/benchmarks-for-the-fixes-to-the-latest-comment-n-1-problem.html

